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PREFACE 

The Range Commanders Council (RCC) was originated to preserve and enhance the efficiency, 
effectiveness, and economical operation of member ranges, individually and collectively, thereby 
increasing the national capability for research, development, and operational testing and evaluation. 
In the area of optical tracking, two sub-groups of the RCC have had a common interest. The two 
groups are the Optical Systems Group (OSG) and the Joint Range Instrumentation Accuracy 
Improvement Group (JRIAIG). The common interest in optical systems has been the overall 
accuracy of such instruments. Presently, optical systems are used for tracking a wide variety of 
targets ranging from sub-munitions and un-manned vehicles to aircraft, missiles, and satellites. In 
each of these tracking situations, the accuracy of the final results is of primary importance. 

The raw range, azimuth, and elevation data from optical systems contain both systematic and 
random errors. Random errors are typically estimated, using statistical methods, and may be 
minimized by the use of optimal filter/smoother techniques. Systematic errors, on the other hand, 
require calibration (via satellite tracking or similar means), mathematical modeling, and mechanical 
alignment to remove or reduce their effects. The measurement and control of these errors can be very 
difficult and time consuming. 

Since the error models (and error terms) for optical and radar tracking systems correspond 
strongly in most areas, this document was derived from RCC Document 256-93, IRIG Radar 
Calibration Catalog. Ranges which responded with calibration procedures for the error terms have 
been identified along with their procedures for assessment and measurement. 

JRIAIG tasked the Air Force Flight Test Center (AFFTC) to create the first optical calibration 
catalog and to identify specific error models and procedures which will serve as generic starting 
points for future participants in optical calibrations. The current version of this document (Draft 1, 
August 1993) reflects the comments and suggestions of AFFTC local personnel, with inputs and 
comments from other ranges to be included in Draft 2.   Some sub-sections for which discussions or 
derivations were not available in RCC Document 256-93, IRIG Radar Calibration Catalog, have 
been updated. A list of reference material is provided in the appendix primarily as a guide for further 
reading. 

This document will serve as the IRIG reference for optical tracking systems calibrations; it may be 
reproduced as necessary for appropriate DOD agencies and their contractors. Please direct questions or 
comments to 

JRIAIG Task (JR-3) Chairman: Editor (OSG affiliate): 

Mr. William Tagliaferro Mr. James A. Garling, Jr. 
Computer Sciences Corporation Computer Sciences Corporation 
P.O. Box 446 P.O. Box 446 
Edwards Air Force Base, CA 93523 Edwards Air Force Base, CA 93523 

Telephone: (805) 277-5163 Telephone: (805) 277-5163 
Facsimile:   (805)277-5497 Facsimile: (805)277-5497 
e-mail:       btag@tspi.elan.af.mil e-mail:      jgarling.tsr@mhs.elan.af.mil 

tagliafe@tecnetl jcte.jcs.mil 
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1.   INTRODUCTION 

Advancements in missile and space vehicle technology have generated stringent accuracy 
requirements for optical tracking systems. Because these systems make precise measurements of 
the angular direction of a test object in space, the measurements must be calibrated to a common or 
accepted reference to establish the accuracy of the measurements obtained. The Joint Range 
Instrumentation Accuracy Improvement Group (JRIAIG) of the Range Commanders Council 
(RCC) surveyed the range community to determine whether or not optical calibrations were being 
done, and if so, what procedures were being followed and what error models were being used. The 
response to this survey showed that no certified optical calibration procedures have been developed 
and that few established error models are in use. Only a small sample of the participating ranges 
were able to submit copies of the optical calibration procedures in use at their respective ranges. 
The documents that were submitted contributed to the completion of this document. Although the 
specifics of the procedures may deviate from one range to another, the theory and general 
techniques of the models were found to be the same. 

No attempt was made to specifically address individual types of optical systems in the intial 
version of the IRIG Optical Tracking Systems Calibration Catalog. Instead, measurement 
procedures are described in general terms, focusing on the nature of the measurement rather than 
the details. The document therefore does not provide a discussion of all optical error sources 
identified by other IRIG or industry documents but rather addresses those major error sources for 
which mathematical models exist and calibration procedures have been developed. The document 
is also intended for application to optical systems that are pedestal mounted (i.e. on Askanias, 
Cinetheodolites, Kineto Tracking Mounts, etc.). Since the error models for optical tracking 
systems closely parallel those for radar systems, the initial draft of the document was derived from 
RCC Document 256-93, IRIG Radar Calibration Catalog. 

The IRIG Optical Tracking Systems Calibration Catalog addresses a very large number of 
terms applied in known error models, accounting for most of the systematic errors contained in 
Time-Space-Position-Information (TSPI) derived from optical tracking systems. The focus is 
mainly upon identifying the error terms in common use at all ranges and structuring a standard 
error model to reflect these similarities. The remaining terms either cannot be estimated and 
removed, or result from random/undetermined error sources. The goal of the error model 
identified is to maintain the total contribution of uncorrected systematic errors to less than one 
least-significant-bit (LSB) for the instrument in question, although certain factors may make this 
impossible. The purpose of the document as a whole is to summarize information about existing 
calibration procedures in order that any range can use this document to tailor procedures to their 
local conditions. Although each range may develop different procedures, the end product should 
reflect methods which are traceable to a common reference standard (i.e., this document). It is 
assumed that the user of the document will be familiar with the calibration of ground-based optical 
tracking systems. The individual error model terms are presented as errors which are subtracted 
from the measured data to yield corrected data. These error sources represent the relationship 
between the true and measured data as follows: 

Error = Measured - True 



When using the error model presented in this document, particular attention should be given to 
the relationship between the physical meaning of the error source and the sign convention of its 
correction. Moreover, the term normal refers to azimuth and elevation values recorded when the 
measured elevation is less than 90° (0° to 90°). The term plunge (or dump) refers to those values 
recorded when elevation is greater than 90° (90° to 180°). The model ecounters difficulty at 90° 
elevation since the azimuth value is undetermined at this pointing angle. 

In paragraph 2, SYSTEMATIC ERROR MODEL DEFINITION, the optical error model is 
defined in terms of azimuth and elevation errors. In paragraph 3, SYSTEMATIC ERROR MODEL 
DESCRIPTION, these terms are further explained with high-level descriptions of the common 
methods of measurement. Paragraph 4, SYSTEMATIC ERROR MODEL DERIVATION, then 
provides derivations for the individual error model elements. In the concluding paragraph 5, 
APPLICATION OF ERROR MODEL, a possible error coefficient collection methodology is 
discussed. 

• 



2.    SYSTEMATIC ERROR MODEL DEFINITION 

The phrase error model can be misleading. The implication can be that the true position or 
state of a target is known and that when the measured values are compared to the truth, errors are 
found which can be modeled. 

In reality, the exact location of the target is unknowable. For practical applications, truth 
standards can be any source of information that is sufficiently more accurate than the system being 
calibrated. Often an order of magnitude is used as the criterion for a data source to function as the 
truth standard (i.e., the true-to-measured accuracy ratio is greater than ten). Under these conditions, 
comparison of the measured data with the truth standard yields error residuals that reflect the combined 
effect of both systematic and random errors in the measurement. The purpose of the error model is 
therefore to describe known systematic errors which can be mathematically subtracted from the data. 
The superposition of the systematic error terms make up the total correctable error. This combined 
term is divided among the two separate components of azimuth and elevation. 

The error model definition is presented in paragraphs 2.1, Azimuth Component, and 2.2, 
Elevation Component, with component variables defined in paragraph 2.3, Component Definitions. 
For cross-reference purposes, each equation in the document is numbered according to the 
paragraph and position within the paragraph (for example, 2.1-1 refers to the first equation in 
paragraph 2.1). 

2.1  Azimuth Component 

The following equation presents the error terms of the azimuth component of a pointing angle 
solution: 

Ac   =   Ao (2.1-1) 

- b0 • Zeroset 

- bi Äe Time Delay 

- bi' Äe  Velocity Servo-lag (br = 1 / K A) 

— i /     A 
- b2 Ae Acceleration Servo-lag (b 2 ~ 1' K a ) 

-b3sin(Ai + cc !)tanE2 Mislevel 

- b4sin (2Ai + & 2) tan E2 Mislevel Wobble 

- bsRi Äe Transit Time (bs = 1 / speed of light) 

-b6tanE2 Nonorthogonality (Standards) 



- bvcos (miAo + ()>!) mi Harmonic Encoder Nonlinearity       Jflk 

- bgcos (ni2Ao + §2) ni2 Harmonic Encoder Nonlinearity 

- bgcos (mßAo + <j>3) m3 Harmonic Encoder Nonlinearity 

- biosec E2 Electrical Misalignment (Collimation) 

- 77 tan 0 - 7 tan E2 cos A2 + # tan E2 sin A2  Vertical Deflection 

cos A 2 secE2 
-a5     ^      XSurvey 

sin A 2 secE2 
-a6 R  Y Survey 

2.2 Elevation Component 

The following equation presents the terms of the elevation component of a pointing angle solution: 

Ec  =     E0 (2.2-1) 

-c0 Zeroset ^^ 

- ci Ee Time Delay 

- crEe Velocity Servo-lag (ci' = 1 / K v ) 

  1 /     E 
- C2 Ee  Acceleration Servo-lag (C2~ 1' K a ) 

- C3COS (Ai + ßj) Mislevel 

- C4COS (2Ai + ß2 ) Mislevel Wobble 

- CsRestEe  Transit Time (C5 = 1 / speed of light) 

- C6COS (niE0 + 61) ni Harmonic Encoder Nonlinearity 

- C7COS (n2E0 + 02) n2 Harmonic Encoder Nonlinearity 

CgCOS (n3E0 + &3 ) n3 Harmonic Encoder Nonlinearity 
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C9C0S Ei Antenna Droop 

- 77sin A2+^cos A2 Vertical Deflection 

sin A 2 si" E 2 vc -a 5  X Survey 
Rest 

COSA2 sinE2 vc -a6   YSurvey 
Rest 

COSE 2 

-a7"^7 ZSmYey 

-PE  Refraction 

- PE'  Residual Refraction 

2.3  Component Definitions 

The azimuth and elevation terms Ai, A2, Ei, and E2 are defined by the following equations: 

Ai = Ao-b0-b7cos(miA, + r] )-b8cos(m2Ao + f2)-b9cos(m3Ao + $3) (2.3-1) 

A2        = A, - bio sec E2 - b6 tan E2 - {b3 sin (A, + a] ) - b4sin (2A, + a2 )} tan Ej (2.3-2) 

Ei = E0 - c0 - c6cos (niE0 + 61) - c7cos (n2E0 +62)- c8cos (n3E0 +03) (2.3-3) 

E2        = Ei - C9COS Ei - C3COS (Ai + ßi ) - C4COS (2Ai + ß2 ) (2.3-4) 

The variables used in the above equations and in paragraphs 2.1, Azimuth Component, and 
2.2, Elevation Component, are defined as follows: 

Ac = Corrected Azimuth 

Ec = Corrected Elevation 

Rest = Estimated Range {derived from multi-point Best Estimate of Trajectory (BET)} 

Ao = Measured Azimuth 

Äe = Estimated Azimuth Velocity 



Äe = Estimated Azimuth Acceleration 

E0 = Measured Elevation 

Ee = Estimated Elevation Velocity 

Ee = Estimated Elevation Acceleration 

ai.ß] = Mislevel Phase Angle 

ct2-ß2 = Mislevel Wobble Phase Angle 

£ ,n = Vertical Deflection Components 

^A = Astronomic Latitude of optical system 

PE = Elevation Refraction Correction 

/?E' = Elevation Residual Refraction Correction 

m1,m2,m3 = Harmonics for Azimuth Nonlinearity 

ni,n2,n3 = Harmonics for Elevation Nonlinearity 

4>],4>2>03 = Azimuth Nonlinearity Phase Angles 

0i,02-03 = Elevation Nonlinearity Phase Angles 

ai,bj,Ci,di = Coefficients of Systematic Error Corrections 
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3.    SYSTEMATIC ERROR MODEL DESCRIPTION 

The following paragraphs discuss the previous error model equations in further detail. Where 
practical, a one-to-one correspondence has been maintained between the error terms in paragraph 
2, SYSTEMATIC ERROR MODEL DEFINITION, and those described in the following discussion. 

This paragraph is again subdivided into the two error components azimuth and elevation. The 
individual error terms within each component are indicated with bold lowercase and contain three 
further subdivisions indicated by italic lowercase. In order that each error term may stand alone as 
an individual reference item, repetition or redundancy among error term descriptions is necessary. 
References for specific optical systems or further reading are noted where appropriate. Derivations 
of the terms are presented in paragraph 4, SYSTEMATIC ERROR MODEL DERIVATION. 

3.1  Azimuth Component 

3.1.1 Zeroset (or Static Error) 

This term accounts for the constant offset of the measured value from the true value caused 
primarily by misalignment of the zero point of the azimuth encoder axis. 

Error Definition and Effects 

Azimuth zeroset is the difference between true north and the mechanical azimuth encoder zero 
position caused by the misalignment of the azimuth encoder axis. Static error is a broader-scoped 
term which attempts to encompass all constant offset errors in the azimuth data due to such factors 
as operator alignment error, misorientation, and alignment flaws. This is a bias value which alters 
all of the azimuth output data by a fixed amount. 

Mathematical Form 

All offset error sources are combined under the following equation. For purposes of systems 
analysis, some ranges may elect to subdivide this error term into it's individual error elements. 

\AA = b0 (3-1-D 

Measurement 

Using the optical system to track the North Star (Polaris), the azimuth position is recorded at 
known times. This value is then compared to a computed value for the position of Polaris, and the 
misalignment is deduced. By recording these measurements in the normal and plunge position, the 
need for precise boresight alignment of the optical instrument axes is eliminated. 



3.1.2 Time Delay and Velocity Servo-lag 

Velocity servo-lag describes the situation in which the optical system is not pointing directly 
at a dynamically moving target under track due to the pedestal's inability to sufficiently adjust for 
a tracking error before the angular velocity of the target creates a new tracking error. Time delay 
indicates an actual bias in an optical tracker's timing, but the effect is identical to that of velocity 
servo-lag. 

Error Definition and Effects 

As the optical system tracks a constant angular velocity target, the servo system responds to 
the displacement error and continually re-positions the pedestal to reduce the position error. A 
target moving with constant azimuth velocity will require the pedestal to rotate at a constant 
azimuth velocity to overcome the position error. The constant error, due to the constant angular 
velocity remaining between the actual target position and the pedestal position, is called a velocity 
servo-lag. Velocity servo-lag is only significant for Type 1 servo systems; this error is zero for 
Type 2 systems. 

Mathematical Form 

The error constants, bi and b'2, have the units of time, therefore this error coefficient will yield 
the appropriate angular correction when multiplied by the azimuth angular velocity. 

\AA = b,Ae (3.l-2a) (Time Delay) 

| AA = br Äe (3 •1 _2b) (Velocity Servo-lag) 

In field procedures, the velocity servo-lag measurement is commonly referred to as Kv. The 
relationship between b'i and Kv is b'i=l/Kv. 

Measurement 

Measurement of the velocity servo-lag value is optical system specific and will not be 
addressed in the current version of this document. It can be noted, however, that although the 
procedure performed in its entirety is lengthy and time consuming, many steps need not be 
repeated each time the velocity servo-lag constant is determined. The system's Kv should be 
checked daily; this check takes approximately 15 minutes. If a truth standard (i.e., visible satellite 
or star with known trajectory) is available, however, the time delay (if any) may be estimated from 
the slope of a plot of the azimuth residuals versus azimuth rate. 

3.1.3 Acceleration Servo-lag 

Acceleration servo-lag describes the situation in which the optical system is not pointing 
directly at a dynamically moving target being tracked due to the pedestal's inability to sufficiently 
adjust for a tracking error before the angular acceleration of the target creates a new tracking 
error. 

m 



Error Definition and Effects 

As the optical system tracks a constantly accelerating target, the servo system must remain on 
track by continually overcoming the constantly changing velocity of the target. The acceleration 
constant is a measure of the optical system's ability to maintain track on the accelerating target and 
is related to the velocity constant. This value will change with each servo bandwidth setting. 

Mathematical Form 

The acceleration servo-lag error constant, hi, has the units of time squared; therefore, this 
error coefficient will yield the appropriate angular correction when multiplied by the azimuth 
angular acceleration. 

\M=b2Äe (3-1-3) 

In field procedures, the acceleration servo-lag measurement is commonly referred to as Ka. 
The relationship between b2 and Ka is b2=l/Ka. 

Measurement 

Measurement of the acceleration servo-lag value is optical system specific and will not be 
addressed in the current version of this document. It can be noted, however, that although the 
procedure performed in its entirety is lengthy and time consuming, many steps need not be repeated 
each time the acceleration servo-lag constant is determined. The system's Ka can be determined and 
recorded on an operational basis for only the bandwidths which will be used during the operation. 
The Ka recordings can be made within a 20-30 minute period. 

3.1.4    Pedestal Mislevel and Bearing Wobble (Azimuth Axis Rollerpath) 

These terms account for the total amount of tilt of the azimuth axis in reference to that of the 
local vertical. This error is primarily caused by mounting irregularities and thermal gradients 
within the pedestal. In most cases, bearing wobble does not exist but rather is due to improper 
location of the levels. 

Error Definition and Effects 

Pedestal mislevel refers to the tilt of the azimuth axis from the local vertical. Azimuth axis 
rollerpath error (bearing wobble) is the result of imperfect azimuth axis bearings. Pedestal 
mislevel and azimuth axis rollerpath errors are discussed here together, because they have a similar 
effect on optical system azimuth and elevation angle error and both are measured in the same 
procedure. These errors are characterized by the first three harmonics of the cosine function. The 
first harmonic represents mislevel; the remaining harmonic terms describe the azimuth axis 
rollerpath error. Of these, the second harmonic only is described in the error model. The effect on 
azimuth is a function of the tangent of the elevation angle and the sine of the azimuth angle plus a 
phase bias. The azimuth mislevel error becomes pronounced at the higher elevation angles due to 



the convergence of the azimuth lines at the zenith, but it should also be noted that erroneous 
mislevel values will result from improperly installed equipment or faulty measurements. 

Mathematical Form 

In the mislevel and wobble equations below, hi and b4 represent the desired coefficients of 
amplitude; cti and 0C2 represent phase angle. A] is the measured azimuth corrected for zeroset and 
encoder nonlinearity. E2 is the measured elevation corrected for zeroset, encoder nonlinearity, 
droop, and the elevation mislevel component. 

\ AA = b3 sin (Ai + a,) tan Ei (3.Ma) (Mislevel) 

I AA = b4 sin (2 A] + a 2) tan E2 (3.1 -4b) (Wobble Measurement) 

Measurement 

Mislevel is generally measured by mounting a level reading device (e.g. Talyvel, 
inclinometer, etc.) onto the pedestal and recording readings at uniform intervals throughout a 360° 
turn of the pedestal. These readings are then fit to a sinusoidal curve to determine amplitude and 
phase. Depending upon resources, the interval may range from a maximum of 90° to a minimum 
of 0° (continuous); however, generally speaking, the gross motion of the pedestal precludes 
continuous measurements due to vibration. Mislevel may also be determined by fitting a curve to 
the boresight measurements of several stars throughout a 360° turn. 

3.1.5    Transit Time 

This term accounts for the azimuth error induced by the motion of the target as the source 
image travels from the target at the finite speed of light. This error is typically only significant for 
great distances and velocities. 

Error Definition and Effects 

Transit time errors arise because optical wavefronts travel at a finite speed and, therefore, 
cannot report the instantaneous image (hence, position) of the target. During a mission, in the time 
that it takes for the image to travel back to the optical system, the target will have moved a distance 
equal to the velocity of the target times the transit time of the image. Therefore, at the time of 
completion of an optical system measurement, the target has moved to a new position and a 
measurement error is present. 

Mathematical Form 

The transit time equation derives from the assumption that azimuth deltas and time intervals 
are sufficiently small to accurately approximate azimuth rate. The estimated azimuth velocity, Äe> 
derives from the measured azimuth value, and b5 represents the reciprocal of the speed of light. 

\M-bsRestAe (3-1-5) 
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• The use of the vacuum speed of light for trans-atmospheric purposes is a valid assumption, 
since the atmospheric effects are considered in the refraction error term. Correction of transit time 
error can be achieved in one of two ways: by applying the foregoing equation to the measured 
data, or by changing the time tag of the data. 

Measurement 

Since transit time is functionally related to the range and azimuth rate values, the amount of 
error will vary throughout a mission; therefore, there is no fixed transit time error which can be 
measured and applied for an optical system. Accuracy is only affected by the selection of a speed 

of light standard which is accepted by the calibration community and the method by which Ae is 
determined. 

3.1.6   Nonorthogonality (Standards) 

This term accounts for the measured azimuth error induced by the tilt of the elevation rotation 
axis from orthogonality with the azimuth rotation axis. 

Error Definition and Effects 

The elevation axis is supported by the standards (i.e., trunions). In an ideal 2-axis gimbal 
azimuth/elevation tracking mount, the elevation axis of rotation is orthogonal (perpendicular in 3- 
space) to the azimuth axis of rotation. However, due to pedestal fabrication, assembly, and tooling 
jig misalignments inherent in the manufacturing process, the standards will not support each end of 
the elevation axis at the same height above the azimuth plane. As a result, an azimuth 
measurement error will be present and increase as a function of elevation angle. In a dynamic 
situation, the optical axis will require a rotation of the azimuth platform in order to maintain track 
of a target which increases in elevation but maintains constant azimuth. 

Mathematical Form 

Through the principles of spherical trigonometry, the nonorthogonality error equation is 
derived to show that the effect on azimuth is proportional to the tangent of the elevation angle. An 
upward tilt of the right side of the elevation axis, as viewed by an observer behind the optical 
system, causes a positive error in the azimuth data output. The coefficient, be, represents the angle 
of nonorthogonality; E2 represents the measured elevation angle and assumes no zeroset, droop, or 
mislevel errors. 

I AA = b6tmE2 (3-1-6) 

This error can significantly affect the azimuth data, but it has negligible effect on elevation 
angle data. 
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Measurement 

No provision exists for the physical correction of this error after initial assembly of the 
pedestal; therefore, it is necessary to periodically measure this error in the field. The 
nonorthogonality coefficient is generally a fixed value which, once established, only requires 
further measurement to determine seasonal fluctuations (due to thermal expansion) and changes 
due to long-term bearing wear. 

Nonorthogonality can also be stated as the amount of non-parallelism between the elevation 
axis and the azimuth plane of rotation; it is with respect to this equivalent definition that the 
following test actually measures nonorthogonality. A Talyvel Electronic Level, capable of 
measuring level indications to one arc-second or better, is used to establish the azimuth plane of 
rotation. A second Talyvel unit is mounted on an AA Gage ULTRADEX connected to the 
pedestal between the elevation axis bearings. A level curve is taken at 400 mil increments of 
azimuth, reading both units. One data pass is taken with the elevation of the pedestal at zero, and 
the other data pass is taken with the pedestal in the plunge position. In going from the normal to 
plunge position, the elevation axis mounted level unit becomes inverted by 180° plus twice the 
magnitude of the nonorthogonality error. A change to the upright position is accomplished by an 
exact 180° rotation of the ULTRADEX, leaving the two data passes biased by twice the magnitude 
of the nonorthogonality. Several data passes are taken to determine precision of the measurement. 

3.1.7    Encoder Nonlinearity 

A precision shaft angle encoder is a device which translates the mechanical rotation of a shaft 
into an incremental electrical digital representation. This term accounts for inaccuracies in the 
azimuth data output resulting from deviations in the straight line correlation of the input shaft 
rotation and the incremental output electrical digital representation due to various factors such as 
environmental conditions, inherent system errors, loading, and misalignment effects. 

Error Definition and Effects 

The error produced is the difference between the encoder output and the actual azimuth axis 
angular position resulting from misalignment in the mechanical linkage or manufacturing defects. 
The error is systematic and represents a nonlinear functional change which can be represented by 
an n-order harmonic series. Experience has indicated that, for a direct drive encoder coupling, 
measured nonlinearities for the first harmonic are very small and can usually be ignored. In most 
cases, the second harmonic is not related to the encoder but rather is induced by the operator during 
the test setup. The nonlinearity of the azimuth encoder causes a variable bias to be introduced into 
the azimuth output data. Although the effect would be relatively small at close range, the 
magnitude of the error could become quite significant at long range. 

The error due to encoder coupling misalignment has a complex relationship to the input angle. 
The three components considered are: 

— Axial translation 
~ Radial translation from concentricity 
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— Angle between rotational axes. 

Each of these contributions to the coupling error is, in general, a function of the shaft angle 
position. These functions usually possess a periodicity equal to some sub-multiple of 360° but may 
have different average values and arbitrary phase relationships with respect to the input angles. 
Other error sources such as velocity, acceleration, and temperature exist but are not specifically 
addressed in this discussion. Some pedestals may employ older systems where a coarse and fine 
encoder are used. Large errors in the 16th and 32nd harmonics are commonly found in these 
systems. 

Mathematical Form 

The nonlinearity error effect causes a varying azimuth angle output bias which follows the 
cosine of the azimuth shaft angle change. The azimuth zeroset and collimation error measurements 
must be considered when encoder data is used for nonlinearity error determination purposes. 

I AA = b? cos (mi Ao + <l>,) (3.1 -7a) (mj Harmonic) 

I AA = bs cos (m2 Ao + <f>2) (3.1 -7b) (m2 Harmonic) 

I AA = b9 cos (m3 Ao + ^3) (3.1 -7c) (m3 Harmonic) 

In the foregoing equation, b7, bg, and bg are the coefficients representing the amplitudes of the 
harmonic error, while <j>i, (j>2, and (J>3 represent the phase angles. The variables mi, m2, and m3 

indicate the harmonic number; while they are indicated here as representing the first three 
harmonics, they may in practice represent any combination of harmonics. 

Measurement 

The testing of a precision angle encoder of any type should take into account all aspects of 
system performance as well as the interface between the encoder and the system with which it will 
be used. Measurement of the encoder nonlinearity is dependent upon the particular type and brand 
of encoding system. In general, however, the encoder output angle increment is compared against 
a precisely measured shaft angle increment through a turn of 360° in azimuth (via ULTRADEX, 
autocollimator, or similar). The recorded deviations of the encoder output from the true rotation 
are then modeled with the cosine series as discussed. The deviations will represent the summation 
of all contributing harmonics, therefore caution must be exercised when attempting to model the 
function. 

Static accuracy or resolution is a measure of the encoder's ability to correlate an infinitesimal 
rotation of the shaft with the transition from one encoder quantum state to another. Encoder 
resolution is equal to the number of quantized positions per turn of the input shaft. It contributes 
an uncertainty to the system output which is a fraction of the smallest quantum, known as the Least 
Significant Bit (LSB), and is equal to one-half a quantum in the worst case. The quantum 
transition state is evidenced by the 'toggling' of the LSB from one number to the next and back 
again in a continuing rapid fluctuation. 
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3.1.8 Optical Misalignment (Collimation) 

This term accounts for the measured azimuth error induced by the misalignment of the 
mechanical and optical axes. 

Error Definition and Effects 

The optical axis of the pedestal is intended to be coincident with the pedestal's mechanical 
axis as defined by the azimuth and elevation encoders (assuming all necessary corrections). In 
practice, however, there is some misalignment error due to mechanical, optical, or electrical 
effects. Mechanical misalignment results from non-orthogonal pedestal azimuth and elevation 
axes. Optical misalignment results from a non-parallel alignment of the optical and mechanical 
axes causing a constant bias if the optical axis is used to calibrate the electrical axis. Electrical 
misalignment results from an improper alignment of the positional encoders which causes an 
apparent shift of the optical axis from the mechanical axis. The misalignment can be decomposed 
into two perpendicular components: one along the elevation circle, and the other perpendicular to 
the plane of the elevation circle. 

Mathematical Form 

Through the use of spherical trigonometry, the effect of electrical misalignment on the 
azimuth measurement is shown to be functionally related to the secant of the elevation. The 
coefficient, bio, represents the actual angular separation (azimuth component) of the electrical and 
mechanical axes. 

I AA = bl0secE2 (3.1-8) 

The elevation component of electrical misalignment is constant and therefore absorbed into 
the elevation zeroset coefficient. 

Measurement 

The azimuth error due to electrical misalignment should be determined on a pre-operational 
test-by-test basis. This error term is sensitive to mission polarization mode and received mission 
frequency. Satellite tracks are generally more desirable in determining this error, but the following 
example of collimation measurement will provide quick results using only a few data points. 

Most static RF axis misalignment measurement procedures consist of pointing the radar 
electrically toward a fixed point in the normal position. Normal radar orientation is when the radar 
is directed toward a target with the elevation angle reading less than 90°. After recording the 
normal azimuth angle, the radar is plunged (elevation angle greater than 90°) and rotated in 
azimuth until it again electrically locks onto the same point in space. Because of the geometry of 
the rotations, the amount of necessary deviation from a 180° rotation is double the amount by 
which the RF axis is not perpendicular to the elevation axis (azimuth component). If the RF axis is 
perpendicular to the elevation axis, the azimuth rotation required to rotate the radar to lock on in 
the plunge position will be exactly 180°. 
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3.1.9 Vertical Deflection 

This term accounts for the azimuth difference induced by the misalignment of the local gravity 
vector from the normal vector of the ellipsoid reference model. 

Error Definition and Effects 

Strictly speaking, the deflection of the vertical is not an error in the pedestal measurement. 
Optical system measurements must be made with respect to a coordinate system, and many 
systems use the astronomic vertical as an axis in their system. Systems that have their vertical axis 
aligned with the astronomic vertical make their measurements in an apparent or astronomic 
topocentric system referenced to the earth's geoid; while trajectory computations are most often 
performed on a mathematical ellipsoid, such as DOD WGS-84, which closely approximates the 
size and shape of the geoid. The ellipsoid is a mathematically defined regular surface with specific 
dimensions. The geoid coincides with the surface to which the oceans would conform over the 
entire earth if free to adjust to the combined effect of the earth's mass attraction and the centrifugal 
force of the earth's rotation. As a result of the uneven distribution of the earth's mass, the geoidal 
surface is irregular. Since the ellipsoid is a regular surface, the two will not coincide; the areas of 
separation between the geoid and ellipsoid are referred to as geoid undulations, geoid heights, or 
geoid separations. 

The geoid is a surface along which the gravity potential is everywhere equal and to which the 
gravity vector is always perpendicular. The angle between the perpendicular to the geoid (plumb 
line) and the perpendicular to the ellipsoid is defined as the deflection of the vertical. The vertical 
deflection angle is usually resolved into a north-south component which is coincident with the 
local meridian and equal to the difference between astronomic and geodetic latitude; and an 
east-west component which is coincident with the prime vertical and proportional to the difference 
between astronomical and geodetic longitude. The north-south and east-west components of 
vertical deflection are referenced by the U.S. Geological Survey as £, and r\, respectively, with a 
north, south, east, or west identifier to indicate the direction in which the astronomic zenith is 
deflected relative to the geodetic zenith as viewed from a point in space. Thus the correction for 
vertical deflection is really a coordinate system transformation from the astronomic topocentric to 
the geodetic topocentric coordinate system. 

The utility of performing this transformation is determined by processing requirements, and in 
some cases will lead to degradation in the data as a result of computer round-off. Typically, this 
transformation is made because users of the TSPI want it referenced to specific earth models such 
as WGS-84, or it will be combined with other instrumentation and the final trajectory estimate 
referenced to a specific earth model. 

Mathematical Form 

The equation describing vertical deflection uses the north-south and east-west components 
provided by the U.S. Geological Survey. The following equation provides the azimuth error as a 
function of azimuth and elevation; there are no coefficients to be determined. Aj and E2 are the 
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adjusted azimuth and elevation angles of measurement, and §A is the astronomic latitude of the 
optical system. 

I AA= T]tan<f>A- ^tan£2 cos ^ + £ tan is 2 sin^2 (3.1-9) 

Confusion with the polarity of the variables of vertical deflection generally arises from the 
local sign convention. A review of local procedures is warranted to ensure proper use of this error 
term-particularly in regions of the world where vertical deflection is significantly large. 

Measurement 

Although measurement by each range is possible, it is generally better to use the values 
provided by the Defense Mapping Agency (DMA). 

3.1.10 Survey 

Not available at this time 

3.2  Elevation Component 

3.2.1    Zeroset (or Static Error) 

This term accounts for the constant offset of the measured elevation angle from true caused by 
misalignment of the elevation encoder axis, optical collimation shift in the elevation plane, or both. 

Error Definition and Effects 

Elevation zeroset can represent two different types of constant offset. In the first 
representation, zeroset defines the mechanical offset of the encoder zero point from the true zero 
point. In the second representation, zeroset (or static error) defines the total offset error due to a 
combination of 1) the mechanical offset and 2) the optical collimation offset. The first definition is 
useful for encoder alignment while the second definition is useful (and necessary) for correction of 
measured data. The effect on the measured data of both definitions is a constant bias from the true 
position. 

Mathematical Form 

All offset error sources are combined under the following equation. 

\AE = CO (3.2-1) 

For purposes of systems analysis, some ranges may elect to subdivide this error term into its 
individual error elements. In this case, the error equation may be represented as: 

Co  =  encoder bias "■"  C0ptical collimation bias \p.L-L) 
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Measurement 

In its strictest definition, elevation zeroset is a measure of the difference between the encoder 
zero position and the perpendicular to the local gravity vector. The broader definition incorporates 
the difference produced by the optical axis collimation error along the elevation circle. The total 
static error is constant and is commonly determined by tracking a known truth standard (e.g. a 
satellite or star of known trajectory) and regressing the error from the trajectory solution. 

3.2.2 Time Delay and Velocity Servo-lag 

Velocity servo-lag describes the situation in which the optical system is not pointing directly 
at a dynamically moving target being tracked due to the pedestal's inability to sufficiently adjust 
for a tracking error before the angular velocity of the target creates a new tracking error. Time 
delay indicates an actual bias in an optical tracker's timing, but the effect is identical to that of 
velocity servo-lag. 

Error Definition and Effects 

As the optical system tracks a constant angular velocity target, the servo system responds to 
the displacement error and continually re-positions the pedestal to reduce the position error. A 
target moving with constant elevation velocity will require the pedestal to rotate at a constant 
elevation velocity to overcome the position error. The constant error, due to the constant angular 
velocity, remaining between the actual target position and the-pedestal position is called a velocity 
servo-lag. Velocity servo-lag is only significant for Type 1 servo systems; this error is zero for 
Type 2 systems. 

Mathematical Form 

The error constants, ci and c'i, have the units of time, therefore this error coefficient will yield 
the appropriate angular correction when multiplied by the elevation angular velocity. 

I AE = a Ee (3.2-3a) (Time Delay) 

\&E = cr Ee (3.2-3b) (Velocity Servo-lag) 

In field procedures, the velocity servo-lag measurement is commonly referred to as Kv. The 
relationship between c'i and Kv is c'i=l/Kv. 

Measurement 

Measurement of the velocity servo-lag value is optical system specific and will not be 
addressed in the current version of this document. It can be noted, however, that although the 
procedure performed in its entirety is lengthy and time consuming, many steps need not be 
repeated each time the velocity servo-lag constant is determined. The system's Kv should be 
checked daily; this check takes approximately 15 minutes. If a truth standard (i.e., satellite or star 
of known trajectory) is available, however, the time delay (if any) may be estimated from the slope 
of a plot of the elevation residuals versus elevation rate. 
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3.2.3 Acceleration Servo-lag 

Acceleration servo-lag describes the situation in which the optical system is not pointing 
directly at a dynamically moving target under track due to the pedestal's inability to sufficiently 
adjust for a tracking error before the angular acceleration of the target creates a new tracking 
error. 

Error Definition and Effects 

As the optical system tracks a constantly accelerating target, the servo system must remain on 
track by continually overcoming the constantly changing velocity of the target. The acceleration 
constant is a measure of the optical system's ability to maintain track on the accelerating target and 
is related to the velocity constant. This value will change with each servo bandwidth setting. 

Mathematical Form 

The acceleration servo-lag error constant, C2, has the units of time squared; therefore this error 
coefficient will yield the appropriate angular correction when multiplied by the elevation angular 
acceleration. 

\AE = ciEe (3-2-4) 

In field procedures, the acceleration servo-lag measurement is commonly referred to as Ka. 
The relationship between C2 and Ka is C2=l/Ka. 

Measurement 

Measurement of the acceleration servo-lag value is optical system specific and will not be 
addressed in the current version of this document. It can be noted, however, that although the 
procedure performed in its entirety is lengthy and time consuming, many steps need not be 
repeated each time the acceleration servo-lag constant is determined. The system's Ka can be 
determined and recorded on an operational basis for only the bandwidths which will be used during 
the operation. The Ka recordings can be made within a 20-30 minute period. 

3.2.4 Pedestal Mislevel and Bearing Wobble (Azimuth Axis Rollerpath) 

These terms account for the total amount of tilt of the azimuth axis in reference to the local 
vertical. This error is primarily caused by mounting irregularities and thermal gradients within 
the pedestal. In most cases, bearing wobble does not exist but rather is due to improper location of 
the levels. 

Error Definition and Effects 

Pedestal mislevel refers to the tilt of the azimuth axis from the local vertical. Azimuth axis 
rollerpath error (bearing wobble) is the result of imperfect azimuth axis bearings. Pedestal 
mislevel and azimuth axis rollerpath errors are discussed here together, because they have a similar 
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effect on optical system azimuth and elevation angle error and both are measured in the same 
procedure. These errors are characterized by the first three harmonics of the cosine function. The 
first harmonic represents mislevel; the remaining harmonic terms describe the azimuth axis 
rollerpath error. Of these, the second harmonic only is described in the error model. Mislevel 
error has a variable effect on the indicated-versus-true elevation parameter, depending upon the 
azimuth position of the pedestal. The error ranges between the peak-to-peak mislevel variation 
measured by the test; however, it should be noted that erroneous mislevel values will result from 
improperly installed equipment or faulty measurements. 

Mathematical Form 

In the mislevel and wobble equations below, C3 and C4 represent the desired coefficients of 
amplitude; ßi and ß2 represent phase angle. Ai is the measured azimuth corrected for zeroset and 
encoder nonlinearity. 

I AE = a cos (Ai + ß,) (3.2-5a) (Mislevel) 

I AE = C4 cos (2 Ai + ß2) (3.2-5b) (Wobble Measurement) 

Measurement 

Mislevel is generally measured by mounting a level reading device (e.g. Talyvel, 
inclinometer, etc.) onto the pedestal and recording readings at uniform intervals throughout a 360° 
turn of the pedestal. These readings are then fit to a sinusoidal curve to determine amplitude and 
phase. Depending upon resources, the interval may range from a maximum of 90° to a minimum 
of 0° (continuous); however, generally speaking, the gross motion of the pedestal precludes 
continuous measurements due to vibration. Mislevel may also be determined by fitting a curve to 
the boresight measurements of several stars throughout a 360° turn. 

3.2.5 Transit Time 

This term accounts for the elevation error induced by the motion of the target as the source 
image travels from the target at the finite speed of light. This error is typically only significant for 
great distances and velocities. 

Error Definition and Effects 

Transit time errors arise because optical wavefronts travel at a finite speed and, therefore, 
cannot report the instantaneous position of the target. During a mission, in the time it takes for the 
image to travel back to the optical system, the target will have moved a distance equal to the 
velocity of the target times the transit time of the signal. Therefore, at the time of completion of an 
optical system measurement, the target has moved to a new position and a measurement error is 
present. 
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Mathematical Form 

The transit time equation derives from the assumption that elevation deltas and time intervals 
are sufficiently small to accurately approximate elevation rate. The estimated elevation velocity 
derives from the measured elevation value, and C5 represents the reciprocal of the speed of light. 

&E = CsReslEe (3-2-6) 

The use of the speed of light for trans-atmospheric purposes is a valid assumption, since the 
atmospheric effects are considered in the refraction error term. Correction of transit time error can 
be achieved in one of two ways: by applying the foregoing equation to the measured data, or by 
changing the time tag of the data. 

Measurement 

Since transit time is functionally related to the range and elevation rate values, the amount of 
error will vary throughout a mission; therefore, there is no fixed transit time error which can be 
measured and applied for an optical system. Accuracy is only affected by the selection of a speed 
of light standard which is accepted by the calibration community and the method by which j?e is 
determined. 

3.2.6 Encoder Nonlinearity 

A precision shaft angle encoder is a device which translates the mechanical rotation of a shaft 
into an incremental electrical digital representation. This term accounts for inaccuracies in the 
elevation data output resulting from deviations in the straight line correlation of the input shaft 
rotation and the incremental output electrical digital representation due to various factors such as 
environmental conditions, inherent system errors, loading, and misalignment effects. 

Error Definition and Effects 

The error produced is the difference between the encoder output and the actual elevation axis 
angular position resulting from misalignment in the mechanical linkage or manufacturing defects. 
The error is systematic and represents a nonlinear functional change which can be represented by 
an n-order harmonic series. Experience has indicated that, for a direct drive encoder coupling, 
measured nonlinearities for the first harmonic are very small and can usually be ignored. In most 
cases, the second harmonic is not related to the encoder but rather is induced by the operator during 
the test setup. The nonlinearity of the elevation encoder causes a variable bias to be introduced 
into the elevation output data. Although the effect would be relatively small at close range, the 
magnitude of the error could become quite significant at long range. 

The error due to encoder coupling misalignment has a complex relationship to the input angle. 
The three components considered are: 

— Axial translation 
- Radial translation from concentricity 
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— Angle between rotational axes. 

Each of these contributions to the coupling error is, in general, a function of the shaft angle 
position. These functions usually possess a periodicity equal to some sub-multiple of 360° but may 
have different average values and arbitrary phase relationships with respect to the input angles. 
Other error sources such as velocity, acceleration, and temperature exist but are not specifically 
addressed in this discussion. Some pedestals may employ older systems where a coarse and fine 
encoder are used. Large errors in the 16th and 32nd harmonics are commonly found in these 
systems. 

Mathematical Form 

The nonlinearity error effect causes a varying elevation angle output bias which follows the 
cosine of the elevation shaft angle change. The elevation zeroset and collimation error 
measurements must be considered when encoder data is used for nonlinearity error determination 
purposes. 

I AE = c6 cos (m Eo + 0i) (3.2-7a) («/ Harmonic) 

I AE = er cos (n2 Eo + 02) (3.2-7b) (n2 Harmonic) 

I AE = cs cos (n3 Eo + 63) (3.2-7c) (n3 Harmonic) 

In the foregoing equation, C6, C7, and eg are the coefficients representing the amplitudes of the 
harmonic error, while 0,, Q2, and Q3 represent the phase angles. The variables ni, n2, and n3 

indicate the harmonic number; while they are indicated here as representing the first three 
harmonics, they may in practice represent any combination of harmonics. 

Measurement 

The testing of a precision angle encoder of any type should take into account all aspects of 
system performance as well as the interface between the encoder and the system with which it will 
be used. Measurement of the encoder nonlinearity is dependent upon the particular type and brand 
of encoding system. In general, however, the encoder output angle increment is compared against 
a precisely measured shaft angle increment through a turn of 180° in elevation (via ULTRADEX, 
autocollimator, or similar). The recorded deviations of the encoder output from the true rotation 
are then modeled with the cosine series as discussed. The deviations will represent the summation 
of all contributing harmonics, therefore caution must be exercised when attempting to model the 
function. 

Static accuracy or resolution is a measure of the encoder's ability to correlate an infinitesimal 
rotation of the shaft with the transition from one encoder quantum state to another. Encoder 
resolution is equal to the number of quantized positions per turn of the input shaft. It contributes 
an uncertainty to the system output which is a fraction of the smallest quantum, known as the Least 
Significant Bit (LSB), and is equal to one-half a quantum in the worst case. The quantum 
transition state is evidenced by the 'toggling' of the LSB from one number to the next and back 
again in a continuing rapid fluctuation. 
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3.2.7 Optical Droop 

This term accounts for the measured elevation error induced by gravitational loading on the 
various components of the instrument assembly (including pedestal trunions and arms, and optical 
system). 

Error Definition and Effects 

Due to the large mass of a tracking pedestal, gravitational forces will act upon it in sufficient 
measure to produce an elevation axis angle error that will depend upon the moment arm presented 
to the gravity vector. Intuitively, the moment arm is a maximum at 0° elevation and a minimum at 
90° elevation. The functional relationship of the error follows the cosine of the elevation angle. 
The optical system components most affected by droop are the camera/lens subsystems and the 
pedestal arms (upon which the camera/lens subsystem is mounted). 

Note that this discussion addresses center mounted optics only. The additional effects of side 
mounted optics are to be included in future revisions of this document. 

Mathematical Form 

From classical mechanics, it can be shown that the functional form of the droop effect is 
proportional to the cosine of the elevation angle. The coefficient, C9, represents the maximum error 
value of droop (at 0° elevation), and Ei assumes correction for zeroset and encoder nonlinearity. 

I AE = C9COSE, (3.2-8) 

Measurement 

The system droop coefficient is generally a constant term which can be applied to real-time 
data as well as post-flight data. Measurement of droop is best achieved by modeling the functional 
form in a known trajectory which spans a wide range of elevation angles. Droop measurements 
using a boresight tower are theoretically possible, but experience has shown this method to be 
unacceptable for instrumentation optics (use of satelites or visible stars is recommended, although 
this introduces additional error considerations). 

3.2.8 Vertical Deflection 

This term accounts for the azimuth difference induced by the misalignment of the local gravity 
vector from the normal vector of the ellipsoid reference model. 

Error Definition and Effects 

Strictly speaking, the deflection of the vertical is not an error in the pedestal measurement. 
Optical system measurements must be made with respect to a coordinate system, and many 
systems use the astronomic vertical as an axis in their system. Systems that have their vertical axis 
aligned with the astronomic vertical make their measurements in an apparent or astronomic 
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topocentric system referenced to the earth's geoid; while trajectory computations are most often 
performed on a mathematical ellipsoid, such as DOD WGS-84, which closely approximates the 
size and shape of the geoid. The ellipsoid is a mathematically defined regular surface with specific 
dimensions. The geoid coincides with the surface to which the oceans would conform over the 
entire earth if free to adjust to the combined effect of the earth's mass attraction and the centrifugal 
force of the earth's rotation. As a result of the uneven distribution of the earth's mass, the geoidal 
surface is irregular. Since the ellipsoid is a regular surface, the two will not coincide; the areas of 
separation between the geoid and ellipsoid are referred to as geoid undulations, geoid heights, or 
geoid separations. 

The geoid is a surface along which the gravity potential is everywhere equal and to which the 
gravity vector is always perpendicular. The angle between the perpendicular to the geoid (plumb 
line) and the perpendicular to the ellipsoid is defined as the deflection of the vertical. The vertical 
deflection angle is usually resolved into a north-south component which is coincident with the 
local meridian and equal to the difference between astronomic and geodetic latitude; and an 
east-west component which is coincident with the prime vertical and proportional to the difference 
between astronomical and geodetic longitude. The north-south and east-west components of 
vertical deflection are referenced by the U.S. Geological Survey as \ and r\, respectively, with a 
north, south, east, or west identifier to indicate the direction in which the astronomic zenith is 
deflected relative to the geodetic zenith as viewed from a point in space. Thus the correction for 
vertical deflection is really a coordinate system transformation from the astronomic topocentric to 
the geodetic topocentric coordinate system. 

The utility of performing this transformation is determined by processing requirements, and in 
some cases will lead to degradation in the data as a result of computer round-off. Typically, this 
transformation is made because users of the TSPI want it referenced to specific earth models such 
as WGS-84, or it will be combined with other instrumentation and the final trajectory estimate 
referenced to a specific earth model. 

Mathematical Form 

The equation describing vertical deflection uses the north-south and east-west components 
provided by the U.S. Geological Survey. The following equation provides the elevation error as a 
function of azimuth; there are no coefficients to be determined. A2 is the adjusted azimuth angle of 
measurement. 

I AE= TjsmA2 + £ cos A2 (3.2-9) 

Confusion with the polarity of the variables of vertical deflection generally arises from the 
local sign convention. A review of local procedures is warranted to ensure proper use of this error 
term—particularly in regions of the world where vertical deflection is significantly large. 

Measurement 

Although measurement by each range is possible, it is generally better to use the values 
provided by the Defense Mapping Agency (DMA). 

23 



3.2.9 Survey 

Not available at this time 

3.2.10 Refraction and Residual Refraction 

This term accounts for the errors induced in the elevation measurement by an inappropriate 
or inaccurate refraction model correction. 

Error Definition and Effects 

Elevation errors due to refraction are the result of refractive index changes causing bending of 
the propagation path of electromagnetic energy. In a typical atmosphere, the refractive gradient 
will decrease smoothly with increasing height; however, anomalies will exist for various reasons 
and result in an inaccurate representation of the atmospheric characteristics. 

Mathematical Form 

Although presented as a constant, this variable could actually represent any number of 
functions designed to specifically address shortcomings in the refraction model applied to the data. 
The danger of such an open-ended approach is that, depending upon the functional form this 
variable takes, it may actually absorb errors attributable to other systematic error sources during a 
regression analysis routine. 

AE = pE (3.2-10a) (Refraction) 

\AE = pE, (3.2-10b) (Residual Refraction) 

Measurement ' 

Refraction errors are determined through the use of sophisticated mathematical models based 
on inputs from the local environment. Residual refraction is intended to address errors associated 
with inaccurate weather condition inputs to the refraction model. 
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• 

4.    SYSTEMATIC ERROR MODEL DERIVATION 

The following discussion provides a derivation for each of the error model terms described in 
the preceding paragraph. In this paragraph, however, the discussion does not follow a one-to-one 
correspondence with those terms in preceding paragraphs. Rather, the azimuth and elevation 
components of several error terms have been combined under one discussion in cases where the 
derivation proceeds from a common point or assumption (Paragraph 4.1). The derivation of the 
refraction term is complex and is left to a separate discussion (Paragraph 4.2). 

Error is defined, for the purpose of this derivation, to be the difference between the 
measurement (or computed) value and the true value. The true value is, of course, unknowable; 
however, for practical applications it comes from some standard that is sufficiently more accurate 
than the system being calibrated. The total error is the resultant sum of all systematic error terms. 

4.1 System Errors 

4.1.1 Static Errors 

The static error or bias is characterized by a constant offset from the true value. Sources of 
this error can be many ~ encoder zeroset, image transit delay due to range, operator alignment, etc. 
As for the error model, the equations for azimuth and elevation are simply: 

AA = constant^ 

AE = constants ; 

(4.1-1) 

(4.1-2) 

4.1.2 Servo-lag 

There are two types of feedback control systems commonly found in tracking pedestals: 

Type 1 System:  Zero-displacement-error system. A constant reference input signal will 
produce a constant velocity of the controlled output. 

Type 2 System:  Zero-velocity-error system. A constant reference input signal will produce 
a constant acceleration of the controlled output. 

The equation which relates the response or output function to the input function is 

¥o(t) = ys(t)-s(t) (4.1-3) 
where 

y/0 (t) = output function 
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y/(t)   = input function 

e(t)    - error function 

Servo-lag corrections deal with steady state error. A Type 1 system can follow a constant 
velocity input with zero velocity error, but with a constant displacement error. 

The displacement error is due to a lag in the servo's ability to develop the required velocity 
and is given by 

E=y'/Kv (4-1-4) 

where   y/' is the constant velocity input and Kv is the servo's velocity error constant. Note that for 
a zero velocity input there is zero displacement error. 

A Type 2 system can do better; it can follow a constant acceleration input with zero velocity 
and acceleration errors. Under constant velocity (zero acceleration) input, it is able to zero-out the 
displacement error encountered with a Type 1 system. Under a constant, non-zero acceleration 
input, however, a Type 2 system also produces a displacement error due to servo-lag. This error is 
given by 

e=y/"/Ka (4-1-5) 

where   y/'  is the constant acceleration input and Ka is the servo's acceleration error constant. 
Note that for a constant velocity (zero acceleration) input there is zero displacement error. 

Software can correct for these steady state errors by using calculated values for velocity and 
acceleration and input values of Kv orKa (actually, values for 1/KV and 1/Ka are generally used as 
input). Errors are calculated separately for the range, azimuth, and elevation channels. 

AA= (1/K? )A or(l/Kf )Ä (4.1-6) 

AE=(l/K?)Eor(l/K?)E (4.1-7) 

where the Kv or Ka represent the appropriate servo error constants for range, azimuth, or elevation. 

4.1.3 Pedestal Mislevel 

Figure 4.1-1 shows the azimuth circle in the horizontal plane and a mislevel plane. The 
platform (or pedestal) has been misaligned with respect to the horizontal. 

• 

• 
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MISLEVEL 
PLANE 

Figure 4.1-1 Mislevel Geometry 

The following rotation will align the Xi Y1Z1 system with the XYZ system: 

rv \ 

yZ j 

= RZl(-¥ ) Ry,( P ) Rz,(¥ ) 

rx? 

\Zij 

where 

RZl(y/)= 

Rr,(p) = 

cos y/    sin y   0 

- sin y/   cos y/   0 

V       0 0   1 j 
f  I 0   -^ 

0   10 

J 

Rz,(-W) = 

p   0      1 

'cosy/   -smy/ 0 ^ 

smy/    cosy 0 

0 0 1 

(4.1-8) 

(4.1-9) 

(4.1-10) 

(4.1-11) 

Then equation 4.1-8 becomes 

• 

< X ^ 

Y 

yZ j 

XrPZiCosy/ 

Y,-pZjSmy/ 

Xi pcosy/ + YiP sin yr + Z,) 
and 

(4.1-12) 
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AX = -pZi cos^ (4.1-13) 

AY = -pZisiny/ 

AZ = Xi pcosy/+ Yi psmy/ 

(4.1-14) 

(4.1-15) 

These errors must now be transformed into AR, AA, and AE . This is done by noting that: 

R= VX 2 + Y 2+Z 2 (4.1-16) 

^=tanY*/:r; 

E= tan'; 

( \ 
Z 

I X2 + Y2 

(4.1-17) 

(4.1-18) 

The first order differences are: 

AR= 0 

AA= (d A /d X )AX + (d A /d Y )A Y 

AE= (d E /d X )AX + (d E Id Y )AY + (d E /d Z )AZ 

Then, by substitution, we get: 

AA= /?sin(A + ^)tanE 

AE= pcos(A + ^) 

where <j>= 7c/2-y/. 

4.1.4 Optical Misalignment (Collimation) 

The optical axis and the mechanical axis can be misaligned. There are two directions to this 
misalignment: one along the elevation circle, and the other perpendicular to the plane of the 
elevation circle. Figure 4.1-2 shows this relationship. 

(4.1-19) 

(4.1-20) 

(4.1-21) 

(4.1-22) 

(4.1-23) 
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Figure 4.1-2 Optical Misalignment Geometry 

From Figure 4.1-2 and the principles of spherical trigonometry, the errors are given as: 

tanfA^ =  t^AzlvAA 
cos(E ) 

or in component form as: 

(4.1-24) 

AA = AMsecE 

and 

(4.1-25) 

(4.1-26) AE= EM 

which is constant and absorbed in the elevation zeroset, Eo- 

4.1.5 Nonorthogonality (Standards) 

The term standards is also given to this term because the elevation axis is supported by the 
standards (aka. trunions). If the standards are not the same height, the elevation axis will not be 
orthogonal to the azimuth axis. See Figure 4.1-3 for an illustration of this situation. 
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Figure 4.1-3. Nonorthogonality Geometry 

From Figure 4.1-3 and the principles of spherical trigonometry, the following relationships are 
found to exist: 

tm(RS )= tm(<t>)sin(E ) 

tm(RS )= tan(SE )COS(E ) 

or by rearranging, 

tm(SE )= tan(^;tanf£ ; 

Now, let 

K= tan^ 

and for small angles, 

SE = tan SE . Substituting gives 

SE= K tan£ 
AA= K tanE 
AE * 0 

4.1.6 Encoder Nonlinearity 

(4.1-27) 
(4.1-28) 

(4.1-29) 

(4.1-30) 

(4.1-31) 
(4.1-32) 
(4.1-33) 

Encoder nonlinearity is primarily due to the construction of the encoder itself. The encoder 
measures an angle based on the encoder's mechanical axis. When the encoder is coupled to an 
azimuth or elevation shaft, perfect mechanical alignment of the mechanical axis of the shaft and 
encoder is not possible. The problem is compounded when the angle measuring device is a 
multiple stage system such as a resolver. Figure 4.1-4 shows the situation. • 
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Figure 4.1-4 Encoder Nonlinearity Geometry 

• 

From figure 4.1-4 we have 

X = RsinAr andY= RcosAi 

R 2_ X2 + Y2 and AT = tan'(X /Y ) 

(4.1-34) 

(4.1-35) 

Although a range term appears in the above equations, this term does not imply that range 
must be known to derive encoder linearity (as the range term drops out before the final solution is 
obtained). Linearizing equations 4.1-32 and 4.1-33 gives: 

or 

&AT = (dAT /dX )AX + (dAT /dY )AY 
= (Y /R 2 )AX-(X /R 2)AY 

= (Y /R)- (AX /R)-(X /R)- (AY /R) 

Then, by substitution 

(4.1-36) 
(4.1-37) 

(4.1-38) 

AA= (AX  /R JcosA- (AY /R)sinA (4.1-39) 

AA= AN sin A + BN COS A (4.1-40) 

The X-Y coordinate system can be defined as AX - AY such that the error equations become: 

AA= AN COS(A + ^) 

AE = EN COS(E + ^) 

(4.1-41) 

(4.1-42) 
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4.1.7 Optical Droop 

Due to the large mass of an optical system, gravity will act upon it to produce a deflection 
(droop) in elevation that will depend upon the moment arm presented to the gravity vector. 
Intuitively the moment arm is maximum at 0° elevation and zero at 90° elevation. Figure 4.1 -5 
shows this relationship. 

Figure 4.1-5 Droop Geometry 

The derivation of droop can be simplified by thinking of the optical system assembly as a 
solid beam with the entire mass of the system assembly concentrated at a distance D from the 
center of rotation of the elevation system. It can be further assumed that no bending of the beam 
occurs. From classical mechanics, the deflection at the end of the beam at a distance x-DcosE is 
given by the following equation: 

• 

y= -x 
W 

2nA 
(4.1-43) 

The mass of the system is acted upon by gravity in a downward direction only to produce a 
force which creates the deflection v. W constitutes this force, n is the shear modulus, and A is the 
cross-sectional area of the beam. The negative sign indicates the deflection to be downward. 

Substituting a constant, K, which is equal to -W/2nA, the equation becomes, 

AE= y= KDcosE (4.1-44) 

The product KD is the droop coefficient, c% in the error model description. 

4.1.8 Vertical Deflection 

Vertical deflection is a result of the fact that in geodesy the irregular shape of the earth is 
approximated by a mathematical surface. The irregular shape is known as the geoid, and 
represents the gravimetric equal potential surface. The geoid coincides with the surface to which 
the ocean would conform over the entire earth if free to adjust to the combined effects of the earth's 
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mass attraction and the centrifugal forces of the earth's rotation. The mathematical surface is an 
ellipsoid of rotation that "best fits" the shape of the geoid. Vertical deflection results from the fact 
that the normals to these two surfaces are not coincident (Figure 4.1-6). 

Figure 4.1-6. Vertical Deflection 

Consider a point P near the surface of the earth (Figure 4.1 -6). From point P there may be 
erected a geodetic vertical which is normal to the mathematical surface of the ellipsoid. There may 
also be erected a vertical which is normal to the irregular surface of the geoid at P. This vertical 
would be that of a, plumb line. The angular separation of these two vertical lines is called the 
vertical deflection. As can bee seen in Figure 4.1-6 these two verticals have different latitudes 
and longitudes. The vertical referenced to the geoid is called the astronomic vertical and has the 
corresponding astronomic latitude and longitude. The vertical referenced to the ellipsoid is called 
the geodetic vertical and has corresponding geodetic latitude and longitude. 

The deflection of the vertical at an instrument site, say point P, is defined by the deviation in 
the meridian, 

Z=(+A-   <t>) 

by the deviation in longitude, 

(4.1-45) 

ß= (XA- V 

and by the deviation in the prime vertical, 

(4.1-46) 

77= ßcos<j> (4.1-47) 
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Two rectangular coordinate systems with coincident origins both at P establish the astronomic 
and geodetic local level rectangular coordinate systems. For convention, let X be positive east, Y 
be positive north, and Z be the particular vertical in question. Then the transformation from one 
system to the other system is accomplished by the three axis rotation: 

XG I, mi    n, XA 

YG = h m2   ri2 YA 

ZG h m3   n3 ZA 

(4.1-48) 

where the row subscripted with a 1 contains the direction cosines of the XQ axis in the astronomic 
system, the row subscripted with a 2 contains the direction cosines of the YG axis in the astronomic 
system, and the row subscripted with a 3 contains the direction cosines of the ZQ axis in the 
astronomic system. Using the exact definitions of these direction cosines, a rotation matrix can be 
defined as: 

M 

cos/? - sin <j> A sin/? cos^ jsm ß 

sin (# sin/?      cos£- sin ^ ^ sin ^ (7 - cos/?,)   sin £ + sin <j> cos ^ A (1 - cos ß) 

- cos 0 sin ß   - sin E, + sin ^ ^ cos f(l- cos ß)    cos E, - cos ^ ^ cos ^ (I - cos ß) 

(4.1-49) 

The following relations are exact transformations between astronomic system and geodetic 
system for Equation 4.1.49: 

" X ' ' X ' 

Y = M Y 

Z 
G 

Z 

(4.1-50) 

and 
X ' X ' 

Y =  MT Y 

Z 
A 

Z 

(4.1-51) 

The typical TSPI coordinates, (R)ange, (A)zimuth, and (E)levation are related to the Cartesian 
coordinates X, Y, and Z as follows: 

X' = R cos(E) sin(A) 
Y = R cos(E) cos(A) 
Z = R sin(E) 

(4.1-52) 
(4.1-53) 
(4.1-54) 

and 

R=  V X2+ Y2+ Z2 (4.1-55) 
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A -I   X A=  tan'y (4.1-56) 

E -  tan"' 
V X3+ Y' 

(4.1-57) 

The steps in transforming TSPI in one system to another system involve first transforming 
range, azimuth, and elevation to X, Y, and Z; making the appropriate rotation; and then 
transforming the rotated X, Y, and Z back to range, azimuth, and elevation. 

By making small angle assumptions, a first order approximation for the rotation matrix would be: 

/   - 7] tan <f>   r\ 

Tj tan </> IB, (4.1-58) 

where <p is either the astronomic or geodetic latitude without further impairment of accuracy. 
Having made these assumptions, the vertical deflection is given by: 

AA = AA- AG
=

  77tan^-77tanEcosA + (f; tanEsinA (4.1-59) 

AE=  EA-  EG
=

  ?7sinA+ £cosA (4.1-60) 

4.2 Atmospheric Errors 

4.2.1    Refraction Technical Description 

Due to the many refractive layers of atmosphere through which a wave front must travel, the 
refraction problem is complex. The refraction routines discussed below were developed for the 
Eastern Test Range by Gerald Trimble. Actually, two options exist for refraction corrections: 

Option 1 -REEK, a completely rigorous ray trace method which solves the differential equation of 
a ray traveling through a spherically stratified atmosphere. 

Option 2 -TRFR, a fast approximation to the refraction corrections provided by REEK (within 
3%). TRFR uses REEK to build a table of refraction profiles prior to processing 
any data. Since TRFR is a subset of REEK, this option will not be discussed. 

4.2.1.1 REEK Refraction 

The subroutine REEK is designed to compute range and elevation refraction corrections in 
the troposphere and ionosphere for both pulse (group) or continuous wave (phase) radar systems. 
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There are no practical limitations on range or elevation values and the subroutine applies equally 
well for optical paths. The atmosphere characteristics may be supplied as an explicit profile of 
refractivity versus height or in terms of some reference profile plus a ground index to correct for 
local moisture conditions. Two different types of data input may be presented to REEK: 

Observed input of range (R) and elevation angle (<j)0) implies that the instrument is looking 

along that elevation angle (<f>0) and the return pulse is sensed 2R/C seconds after it is 

emitted. The curved path is (R - SR ) long where £R is the retardation refraction 
correction (see Figure 4.2-1). 

^- ^^^ 

Figure 4.2-1 Geometry of Observed Input 

True input of range (R) and elevation^ ) implies that the instrument sees an object 

located on a straight line of elevation angle (f>0 and range R (see figure 4.2-2). 

s              /        
/   ^ 

^rtr^ ^x 
Figure 4.2-2 Geometry of True Input 

The retardation correction is due to the speed difference between a ray travelling in a 
refractive medium and a ray travelling in a vacuum. In the troposphere, the phase refractivity 
values (n) are greater than 1 and profile values, which are in terms of n-1, are positive. Also, no 
difference exists between group and phase corrections. In the ionosphere, the phase refractivity is 
less than 1 and the profile terms are negative. Also, considerable differences exist between group 
and phase retardation corrections. 
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4.2.1.2 Differential Equation of a Ray (Spherically Stratified Case) 

The velocity of an electromagnetic wave in a refractive medium is: 

where 
dt     n 

s = distance along the path 
C = wave propagation speed in a vacuum 
N= phase refractivity 

(4.2-1) 

The components of Equation 4.2.1 expressed in a two-dimensional polar coordinate 
system are (see Figure 4.2-3): 

dO 

dt 

C      cos^ 

n    (Re+h) (4.2-2) 

where 

dh_ 
dt 

C 
n 

— = —   sin <f> (4.2-3) 

0 = geocentric angle from site 
h — height above the earth 
^ = angular direction of the ray relative to local horizontal 
Re = radius of earth (assumed spherical) 

Figure 4.2-3 Definition of Terms 
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Rearranging Equation 4.2.1 to 

dt = — as, 
C 

Equations 4.2.2 and 4.2.3 become 

d 6 _      cos ^ 

~ds~~   (Re+h) <4-2-4) 

— = sin^ (4.2-5) 
ds 

A vector K which describes the three dimensional ray path curvature in a refractive 
medium is: 

K= -(iTxVn) (42.6) 

where 

jT = ray tangent unit vector 
Vn = refractivity gradient 

n = local refractivity scalar 

The initial three dimensional ray tangent vector, assuming for convenience that it lies in the 
{9, R) plane, is: 

l-i,(R^)+iR(£) + i.(0) (4.2-7) 

Substituting Equations 4.2.4 and 4.2.5 into 4.2.7, and noting that 

dR= dh 
ds      ds 

gives: 

IT 
=  h (C0S<f>) + lR (sin<f>) + Ia (°) (4.2-8) 

• 
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where 

ja = unit vector normal to R and jT 

jR = unit vector along R 

iß — unit vector normal to ja and jR 

R = position vector from earth center 

Based on the assumption of a spherically stratified atmosphere, the refractivity gradient is: 

V»-/*W+/*(f£)+/«W (4.2-9) 

or smce 

d n _ d n 
~d~R~ ~dh' 

Equation 4.2.9 becomes 

Vn=i0(O)+jR (fj)+/flW 

Combining these results, Equation 4.2.6 becomes: 

(4.2-10) 

K MO)+iR(o)+ia |«»#|£ (4.2-11) 

which implies that the ray path remains in the ( 0, R ) plane, and hence the a component remains 
zero length. 

If ö is the path angle in the ( &, R ) plane, referenced to the initial horizontal, then dS/ds 
defines the signed curvature magnitude, 

do 1 dn 
— = ±|A- |= - cos^ — 
ds n dh 

It follows that for Figure 4.2-4, the following relationships are true: 

d0_= dS_     d6_ 
ds      ds      ds 

(4.2-12) 

and 
(/>= 8+e 
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Figure 4.2-4. Relationship for Bending. 

The basic differential equations of the ray are 4.2.4,4.2.5 and 4.2.12, assuming spherical 
stratification of the atmosphere. 

4.2.1.3 Range and Elevation Refraction Correction 

An additional differential equation is derived which will accumulate only the range refraction 
corrections as a ray trace solution of the previous differential equations proceeds. This is done in 
the interest of accuracy due to the large numbers associated with range. The derivation 
individually includes both the bending portion and the retardation portion of the range correction. 

4.2.1.3.1 Range Bending Correction 

The range bending correction (sB ) is defined as the difference in the length of the actual ray 

path traversed (S) and the straight line (R) connecting the end points of the ray. EB is expressed as 
(see figure 4.2-5): 

sB=S-R (4.2-13) 
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Figure 4.2-5 Derivation of Bending Error 

Neither the length nor the direction of R are known a-priori to the ray trace. An arbitrary 
straight \me(x) is defined and the differences in length between the ray and (x) are accumulated. 
Subsequent to the ray trace, this is corrected in order to account for the difference in direction (\|/) 
between (x) and line R. With this in mind, the following equation will be used in place of 4.2.13: 

SB = S- X-(R- x) (4.2-14) 

where (x) is assumed the component distance along the straight line defined by the initial 
direction of the ray. This choice in direction is arbitrary and picked only for convenience. 

Differentiating and integrating Equation 4.2.14 with respect to distance gives: 

dX^ 
EB 

-<'• ds 
ds-(R- x) (4.2-15) 

dy 
andsince^^ cos(ö-ö0)> 

ds 

£B=   \[l-cos(S- öo)]ds-(R- x) (4.2-16) 

At the completion of the ray trace, the final direction angle y/ can be determined to correct for 

the bias due to the arbitrary choice of the x direction. 

Expressing ( R- x ) as R( 1- cos y/ ) and using a trigonometric identity, 

41 



1- cos^=  2 sin (E' 
<2, 

greater precision is maintained and Equation 4.2.16 becomes: 

. ^ £B ~    MSin 

s 
2 

ds- R ■ 2 sin2 

,2   j (4.2-17) 

The first term in the above equation is solved during the ray trace solution of the differential 
equations and the last term is a correction applied after the ray trace is complete. 

4.2.1.3.2 Range Retardation Correction 

The range refraction correction due to retardation ( eR) is defined as the difference between 
the distance traveled by the ray in a vacuum minus the distance traveled in the atmosphere. The 
equation is: 

£R -\[cc-\ät (4.2-18) 

ds     C 
We can change variables by noting — = — to yield: 

dt     n 

ER =   \(n-l)ds 
s 

4.2.1.3.3 Total Range Correction 

(4.2-19) 

Figure 4.2-6 Geometry for Elevation Correction 
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The total range refraction correction is the sum of Equations 4.2.18 and 4.2.19: 

ET ~ £B + £R 

and the true range is: 

RT ~ RQ-ST 

(4.2-20) 

(4.2-21) 

4.2.1.3.4 Elevation Angle Correction 

Figure 4.2-6 shows the relationship which will be used to define the elevation correction. 

From Figure 4.2-6, the law of cosines can be expressed as: 

R2
s + 2R2cos(a)= R2

2 + R2 

Solving for cos(a), we get: 

yi   R
2

2+R
2
-RI cos(a) * a. 

2R2R 

Again, using Figure 4.2-6, we see that 

(4.2-22) 

sin(a) = RS sin<9 
R (4.2-23) 

so that a, with the proper sign, can be computed as follows: 

rsin(a) ^ 
a- tan 

cos(a) 
(4.2-24) 

and the true elevation angle $t is: 

n d  = — 0 - a Yt      2 

or 

i>t - -j - 6 - tan"' 
R 

(R2
2 + R 2-R2

s 

2R2R 

(4.2-25) 
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Then, the elevation angle correction is: 

AE = <t>o-t, (4.2-26) 

4.2.1.4 Solution to the Differential Equations (Ray Trace) 

The equations to be solved are: 

d6 cos0 ,, „ __. 
— = — (4.2-27) 

(4.2-28) 

(4.2-29) 

(4.2-30) 

(4.2-31) 

• 

ds (Re+ h ) 

dh_ 

ds 
sin^ 

dS _ 

ds 

1         /A \ dn 

- cos(0; — 
n              dh 

dsB _ 
ds 

2 sin2 

{    2   ) 

d£R_ 

ds 
n-1 

where 

input range (S) is satisfied or until vacuum conditions are encountered (n-l< 10"30) and no 

</>= s+e 

The differential equations are solved using the Runge-Kutta-Gill numerical method until the 
t range (S) is satisfi« 

additional profile exists. 

4.2.2 Transit Time 

Derivation Not Available At This Time 
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5.    APPLICATION OF ERROR MODEL 

The stability and reliability of the coefficients derived using the error model described in this 
document depend on several factors outside the scope of this material; however, for completeness, 
some discussion is warranted at this point. Error coefficients are classified into two separate 
categories: long-term and short-term. Long-term coefficients change very slowly; therefore, the 
frequency of measurement for these is of the order of several months. Short-term coefficients, 
however, can change very rapidly due to mechanical or climatic influences. Measurement of these 
should occur more frequently depending on the type of error. The type of error also determines the 
method of measurement. Some error terms are best determined using electro-optical equipment, 
while others are best determined with satellite or star tracks, or by some other means. The 
following table summarizes the methodology used for the optical systems at the Air Force Flight 
Test Center and is provided as an example for practical optical tracking systems calibration. 

EXAMPLE OF ERROR MODEL COEFFICIENT COLLECTION METHODOLOGY 
Used Al AFFTC For Fiud-Slte Cinetheodolkes 

ERROR TERM PRIMARY 
METHOD 

SECONDARY 
METHOD 

FREQUENCY OF 
CALD3RATION 

Azimuth Terms 

ZEROSET STARS TARGET BOARDS BI-WEEKLY 

TIME DELAY REGRESSED IN BET N/A EVERY MISSION 

MISLEVEL TARGET BOARDS STARS EVERY MISSION 

WOBBLE TARGET BOARDS STARS EVERY MISSION 

TRANSIT TIME PURE MATHEMATICAL N/A EVERY MISSION 

NON-ORTHOGONALITY E/O CALIBRATIONS N/A ANNUAL 

NON-LINEARITY E/O CALIBRATIONS N/A SEMI-ANNUAL 

OPTICAL MISALIGNMENT STARS TARGET BOARDS EVERY MISSION 

SURVEY RE-SURVEY N/A AS NEEDED 

VERTICAL DEFLECTION SURVEY N/A AS NEEDED 

ELEVATION TERMS 

ZEROSET STARS TARGET BOARDS EVRERY MISSION 

TIME DELAY REGRESSED IN BET N/A EVERY MISSION 

MISLEVEL TARGET BOARDS STARS EVERY MISSION 

WOBBLE TARGET BOARDS STARS EVERY MISSION 

TRANSIT TIME PURE MATHEMATICAL N/A EVERY MISSION 

NON-UNEARITY E/O CALIBRATIONS N/A SEMI-ANNUAL 

OPTICAL DROOP STARS TARGET BOARDS EVERY MISSION 

SURVEY RE-SURVEY N/A AS NEEDED 

VERTICAL DEFLECTION SURVEY N/A AS NEEDED 

REFRACTION RTREF(PMTC) REEK(ETR) EVERY MISSION 
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APPENDIX A: RELATED DOCUMENTS 

RANGE REFERENCE TABLE 

OLD NAME NE#NAME 

EASTERN TEST RANGE 45TH SPACE WING 

PACIFIC MISSILE RANGE NAVAL AIR WARFARE CENTER-WEAPONS 
DIVISION 

POINT MUGU NAVAL AIR WARFARE CENTER-WEAPONS 
DIVISION 

SAMTEC 30TH SPACE WING 

WESTERN TEST RANGE 30TH SPACE WING 

USAKA KWAJALEIN MISSILE RANGE 

STATICERROR 

None Available 

AZIMUTH/ELEVA TION ENCODER NONLINEARITY 

None Available 

SERVO LAG 

Procedure for Field Determination ofKy, KA 

May 1972 
Pacific Missile Range 

VERTICAL DEFLECTION 

DMA Technical Report Geodesy for the Layman, DMA TR 80-003 
December 1983 

Defense Mapping Agency 

J. J. O'Connor, Methods of Trajectory Mechanics, ESMC-TR-80-45 
May 1981 

Eastern Space and Missile Center 
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PEDESTAL MISLEVEL AND AZIMUTHROLLERPATHERROR A 

Pedestal Mislevel and Azimuth Rollerpath Error Measurement Procedure 
(using Brunson Electronic Level) 
February 1970 

Pacific Missile Range 

Pedestal Mislevel and Azimuth Bearing Wobble Error Measurement Procedure 
Brunson Electronic Level Method (RADEM No. 2.2.2.1, 2.2.2.2., 2.2.2.3) 
February 1970 

Pacific Missile Range 

TRANSIT TIME 

None Available 

AZIMUTEVELEVA TION AXIS NORTHOGONALITY MEASUREMENTS 

None Available 

DROOP 

None Available 

A TMOSPHERIC REFRA CTION 

Atmospheric Ray Tracing and Refraction Correction, Technical Publication, TP-82-01 
October 1981 

Pacific Missile Range 

Determination of Elevation and Slant Range Errors Due to Atmospheric Refraction, 
Technical Note No. 3280-6, December 1962 (Revised 1964) 

Pacific Missile Range 

Atmospheric Refraction Correction Program, Tech. Note. No. 3430-35-68 
December 1968 

Pacific Missile Range 

Altitude Error at 50 NMIDue to Refraction, For a Range of Atmospheric Profiles Observed 
at Point Mugu, Project RIMCOM, Geophysics Division, Date Unknown 

Pacific Missile Range 

G. D. Trimble, REEK-REEK: Spherically Stratified & Two Dimensional Profile Refraction 
Corrections for Range and Elevation (Technical Memorandum 5350-70-4), ETV-70-90, 
April 1970 

Eastern Test Range 
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OPTICAL SYSTEM ERROR MEASUREMENT 

Boresight Telescope Optical Axis Nonsymmetry Error Measurement Procedure 
(RADEMNo. 2.3.5.1 and2.3.5.2), December 1970 

Pacific Missile Range 

Boresight Telescope Optical Calibration Target Nonlevel Error Measurement Procedure 
(RADEMNo. 2.3.5.3), December 1970 

Pacific Missile Range 

MISCELLANEOUS 

Range Commanders Council Organization Policy Document 
November 1990 

Range Commanders Council 
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